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EVOLVING NOVEL COEFFICIENT SETS FOR OPTIMIZED 
RECONSTRUCTION OF  

QUANTIZED ONE-DIMENSIONAL (1-D) AND TWO-DIMENSIONAL (2-D) 
SIGNALS 

 
 

Abstract. This paper describes a genetic algorithm that evolves optimized sets of 
coefficients for signal reconstruction under lossy conditions due to quantization. 
Beginning with a population of mutated copies of the set of coefficients describing a 
wavelet-based inverse transform, our genetic algorithm systemically evolves a new set of 
coefficients that significantly reduces mean squared error (relative to the performance of 
the selected wavelet) for various classes of 1-D and 2-D signals. 
 
 
1 INTRODUCTION 
 
Wavelets [1] are commonly used to solve problems drawn from a wide range of 
application areas. Wavelet transforms associated with orthonormal, compactly supported 
wavelets [2] and biorthogonal wavelets [3] have been shown to achieve signal 
compression ratios as high as 10:1, 50:1, and even 100:1 without significant information 
loss. In these cases, the corresponding inverse wavelet transforms are capable of 
reconstructing very close approximations of the original signal.  
 
For many practical problems, however, it becomes necessary to represent a given signal 
using a smaller range of possible values. For example, telephone signals (for which speed 
of transmission is most important) are represented by as few as 8 bits, while music 
signals (which require higher signal fidelity) are typically represented by 16-bit values. 
Quantization [4] is the process of mapping signals to a smaller number of bits. Figure 1 
illustrates the process of reconstructing quantized 1-D signals. A 2-D transform is 
accomplished by performing a 1-D transform on each row of the image, followed by a   
1-D transform on each column. 

 

 
Figure 1. 1-D Reconstruction Discrete Wavelet Transform (DWT) Filter with 

Quantization 
 
Errors introduced into the transformed signal via quantization may have an unacceptably 
adverse effect upon the quality of the signal when it is subsequently reconstructed via the 
wavelet inverse transform. A growing amount of empirical evidence (e.g., [5]) suggests 
that nontraditional inverse transformations may do a better job of compensating for the 
negative effects of quantization, resulting in higher fidelity signal reconstruction. In 
particular, recent studies suggest that the use of adaptive ([6], [7]) and/or nonstandard [8] 
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filters may significantly reduce errors for specific classes of signals, which typically 
share spatial domain characteristics. 
 
 
2 METHODOLOGY 
 
Genetic algorithms (GAs) are optimization techniques inspired by Darwinian evolution. 
GAs [9] have been successfully applied to an ever-increasing number of difficult and 
interesting optimization problems. The goal of this investigation was to develop a GA 
capable of automatically modifying the coefficient sets describing wavelet inverse 
transform functions [10] to evolve novel inverse transforms exhibiting significantly 
improved performance for a given class of signals [11]. In particular, our GA 
automatically compensated for errors introduced into the original signal by quantization. 
Performance may be measured in many ways [12]; for this study, performance equaled 
the mean squared error (MSE) in the reconstructed signal. 
 
Figure 2 illustrates our GA-based inverse transform optimization process. The best-of-run 
inverse transform coefficients produced by the GA are used to replace the DWT-1 shown 
in Figure 1. To improve upon wavelet-based techniques, our GA had to evolve optimized 
inverse transform coefficients that significantly reduced the aggregate MSE in each 
reconstructed signal v’(k).  

 

 
 

Figure 2. Detailed GA for Optimization of Coefficients for Inverse Transforms 
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3 TEST RESULTS 
 
We conducted a series of tests to demonstrate the performance of GA-evolved transforms 
relative to that of the Daubechies-4 (Daub4) wavelet inverse transform [10], which may 
be described by the following sets of floating-point coefficients: 
 

h2 = {0.4830, 0.8365, 0.2241, -0.1294} 
g2 = {-0.1294, -0.2241, 0.8365, -0.4830} 

 
Each test was characterized by a particular combination of the following parameters: 
 
1. SIGNAL CLASS. Each test trained our GA using signals drawn from a particular 

class. One-dimensional signal classes used in this study included ramp functions, sine 
waves, and random signals. Additional tests were performed using 2-D photographic 
images. These classes were chosen due to their relevance to real-world applications. 

2. G specified the (maximum) number of generations executed by our GA. Preliminary 
experiments indicated that a large G value was necessary to allow our GA to progress 
toward a globally optimized solution. For each of the 1-D signal tests performed for 
this study, G = 10,000. Since the amount of data processed during the 2-D tests was 
an order of magnitude greater than for 1-D signals, it became necessary to use only G 
= 500 generations. 

3. M specified the population size (i.e., the number of candidate solutions in each 
generation). For each of the tests performed for this study, M = 500. 

4. PC specified the percentage of individuals in the next generation subjected to the 
crossover operator. Preliminary experiments demonstrated the benefits of a high 
crossover rate; for this reason, each of the tests performed for this study used PC = 
100 percent * (M-1)/M = 99.8 percent. 

5. PM specified the probability of mutation, as described below. 
6. N specified the size of the training population (i.e., the number of signals used to train 

our GA). 
 
Our GA copied the best individual from the current generation into position 0 of the next 
generation; this individual was not subject to subsequent crossover or mutation. Our GA 
selected the remaining M-1 individuals from the current generation via tournaments of 
three randomly selected individuals. These individuals were then probabilistically 
subjected to the crossover operator according to PC. Finally, each coefficient of these M-1 
individuals was subjected to the mutation operator with probability PM. Our GA 
initialized PM to 2 percent. If the current generation failed to produce a new globally 
optimal set of coefficients, our GA automatically increased PM by 1 percent, up to a 
maximum of 20 percent; otherwise, our GA reset PM to 2 percent. 
 
3.1 Class 1: Ramp Signals 
 
One-dimensional ramp signals are important for a variety of applications. For example, 
ramp response signals provide information about the size, shape, and orientation of 
dielectric targets [13]. Tests 1, 2, and 3 populated the training set with N ramp signals, 
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each of which contained 50 values. For each signal, our GA initialized the starting value 
α to a randomly selected integer between 255 and 511; set the stopping value ω to α/2; 
and used the following algorithm to determine the remaining values: 

 
if (v[i] == ω) 
 v[i+1] = α; 
else 
 v{i+1] = v[i] – 1; 

 
Our GA initialized each of the g2 and h2 coefficients for the inverse transforms in 
generation 0 to a randomly mutated version of the corresponding coefficient from the 
Daub4 wavelet. 
 
Table 1 summarizes the performance (as measured by the total MSE for N reconstructed 
signals) of each novel inverse transform described by a GA-evolved best-of-run 
coefficient set, relative to that of the Daub4 wavelet. 
 

Table 1. Ramp Signal Test Results 
 

Test  N MSE (Daub4) MSE (evolved)  % Improvement 
    1        100  5505.1  4838.9  12.1  
    2        25  1376.0  1215.0  11.7  
    3        10  552.4  522.9  5.35  

 
These tests evolved the following sets of coefficients for the optimized inverse transform: 
 

Test 1: h2 = {0.3167, 0.8038, 0.3911, -0.0979} 
g2 = {-0.1700, -0.6120, 0.9813, -0.3859} 

Test 2: h2 = {0.3203, 0.8113, 0.3875, -0.1054} 
g2 = {0.1493, -0.0852, -0.4700, 0.2132} 

Test 3: h2 = {0.4053, 0.8110, 0.3024, -0.1052} 
g2 = {-0.0705, 0.1193, -0.8903, 0.2180} 

 
The results of these tests demonstrate the following key points: 
 
1) Novel inverse transforms exist that outperform the Daub4 wavelet inverse transform 

for reconstructing arbitrary ramp signals that have been subjected to lossy 
quantization operations. 

2) Our GA is capable of automatically optimizing coefficient sets for these novel inverse 
transforms. 

3) Training on a larger population of ramp signals allows our GA to evolve solutions 
that exhibit better generalization properties. 
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3.2 Class 2: Sine Waves 
 
The detection of periodic behavior in 1-D signals continues to be a research topic of 
considerable importance [14]. Tests 4 through 12 populated the training set with various 
types of sine waves. Each wave was characterized by the following parameters: 
 

g = gain 
f = frequency 
d = offset. 

 
For these tests, each vector v consisted of 50 sampled values defined as follows: 

 
for (i = 0; i < 50; i++)  
 v[i] = g * sin (2πf * i) + d; 

 
Table 2 summarizes the performance of GA-evolved best-of-run coefficient sets 
optimized under conditions described by various combinations of frequency (f), gain (g), 
and offset (d), relative to that of the Daub4 wavelet described above. 
 

Table 2. Sine Wave Test Results 
 

   Test N g d f MSE (Daub4) MSE (evolved)  % Improvement 
   4  100 128 256 0...999 1096.19  86.69  92.1  
   5  25 128 256 0...999 269.00  20.18  92.5  
   6  10 128 256 0...999 124.55  3.55  97.2  
   7  100 128 0...255 1000 5207.62  5034.13  3.33  
   8  25 128 0...255 1000 1203.68  1182.69  1.74  
   9  10 128 0...255 1000 403.67  397.82  1.45  
   10  100 0...127 256 1000 1123.89  88.19  92.2  
   11  25 0...127 256 1000 274.49  24.90  90.9  
   12  10 0...127 256 1000 108.94  10.30  90.6  
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These tests evolved the following sets of coefficients for optimized inverse transforms: 
 

Test 4: h2 = {0.4875, 0.8279, 0.2109, -0.1294} 
g2 = {-0.1280, -0.2430, -0.6366, -0.4881} 

Test 5: h2 = {0.4876, 0.8280, 0.2109, -0.1294} 
g2 = {0.1156, 0.2664, 0.9523, 0.3452} 

Test 6: h2 = {0.4780, 0.8282, 0.2196, -0.1305} 
g2 = {-0.1398, 0.2286, 0.8616, 0.4919} 

Test 7: h2 = {0.4447, 0.7768, 0.2569, -0.0747} 
g2 = {-0.1050, -0.3507, -0.2918, 0.3030} 

Test 8: h2 = {0.4448, 0.7849, 0.2592, -0.0805} 
g2 = {0.0752, -0.2607, -0.7085, -0.6749} 

Test 9: h2 = {0.4927, 0.8024, 0.2175, -0.0920} 
g2 = {-0.0649, 0.5076, -1.0222, 0.2395} 

Test 10: h2 = {0.4877, 0.8278, 0.2106, -0.1294} 
g2 = {-0.1631, -0.2723, -0.9434, 0.5711} 

Test 11: h2 = {0.4876, 0.8280, 0.2108, -0.1294} 
g2 = {0.1542, -0.2062, -0.7879, 0.4552} 

Test 12: h2 = {0.4777, 0.8279, 0.2208, -0.1293} 
g2 = {0.1337, -0.2792, 0.7655, -0.2608} 
 

Tests 4, 5, and 6 demonstrated that our GA was capable of identifying coefficients for 
inverse transforms that significantly outperformed the Daub4 inverse transform for the 
task of reconstructing sine waves characterized by different f values. For this signal class, 
GA-optimized transforms were capable of reducing MSE in the reconstructed signal by a 
factor of 12 or more. It is interesting to note that, while the magnitude of the four 
coefficients comprising set h2 were virtually identical, the four coefficients from set g2 
exhibited far greater variation, even to the extent of having opposite signs. 
 
Tests 7, 8, and 9 showed that, when the training set consisted of sine waves that differed 
only according to the offset d, little advantage was to be gained from evolving novel 
coefficients for inverse transforms. For these three tests, the performance of the inverse 
transforms described by the evolved coefficient sets improved upon that of the Daub4 
inverse transform by an average of only 2.17 percent. These tests also showed much 
greater variation in the magnitude of g2 coefficients than h2 coefficients, as well as 
differences in the sign of those coefficients. 
 
Tests 10, 11, and 12 demonstrated our GA’s ability to evolve coefficients for inverse 
transforms that significantly outperformed the Daub4 inverse transform for the task of 
reconstructing sine waves that differed only in the gain value g. For this class of signal, 
GA-optimized inverse transforms were capable of reducing MSE in the reconstructed 
signal by a factor of 11 or more. As with previous tests, these results showed greater 
variation in the magnitude of g2 coefficients; indeed, the h2 coefficients evolved during 
these three tests were identical in sign and virtually identical in magnitude, while the g2 
coefficients varied in both sign and magnitude. 
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3.3 Class 3: Random Functions 
 

Tests 13, 14, and 15 populated the training set with one-dimensional vectors v consisting 
of 50 random values between 0 and 255 (inclusive). Table 3 summarizes test results 
under a variety of conditions, relative to the MSE produced by the Daub4 inverse 
wavelet.  
 

Table 3. Test Results for Random Signals 
 

Test  N MSE (Daub4) MSE (evolved)  % Improvement 
    13        100             12680.4  12529.2  1.19   
    14        25             3271.3  3230.7  1.24  
    15        10             1390.0  1333.7  1.04  

 
 

These tests evolved the following sets of optimized inverse transform coefficients: 
 

Test 13: h2 = {0.4781, 0.8248, 0.2285, -0.1177} 
g2 = {-0.1279, -0.2174, 0.8248, -0.4728} 

Test 14: h2 = {0.4781, 0.8268, 0.2331, -0.1209} 
g2 = {-0.1236, -0.2262, 0.8199, -0.4763} 

Test 15: h2 = {0.4864, 0.8282, 0.2234, -0.1192} 
g2 = {-0.1363, -0.2135, 0.8263, -0.4734} 

 
The average performance (in terms of MSE) of the inverse transforms described by our 
GA-evolved coefficient sets from tests 13, 14, and 15 was only 1.16 percent better than 
that of the Daub4 wavelet inverse transform. This advantage remained nearly negligible 
as the number of random signals in the training population increased. Truly random 
signals exhibit no particular pattern; for this reason, our GA was unable to find and 
exploit information common to all of the signals in the training set. 
 
3.4 Class 4: Images 
 
The goal of Tests 16 and 17 was to determine whether the GA-based methodology 
established by Tests 1-15 could be used to evolve a transform that outperformed the 
Daub4 wavelet when reconstructing 2-D images previously subjected to quantization 
error. Test 16 used a training set populated with N portrait-like photographs similar to the 
image shown in Figure 3, while Test 17 used landscape-like photographs similar to those 
shown in Figure 4. Each photographic image consisted of a 512- by 512-array of red, 
green, and blue (RGB) color pixels. Prior to evolution, our GA transformed each image 
from the training set to the corresponding signal in the luminance (YUV) domain. Each 
test used a quantization step of 64 (in effect, discarding the information contained in the 
six least significant bits of each value). 
 
The results of Tests 16 and 17 are summarized in Table 4. These results clearly 
demonstrate that our GA was capable of evolving a best-of-run transform whose 
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performance, in terms of reduced total MSE over a class of images, measurably improved 
upon that of the Daub4 wavelet.  
 

Table 4. Test Results for 2-D Images 
 

Test N     MSE (Daub4) MSE (evolved)  % Improvement 
  16  5 (barb, baboon, lenna, susie, zelda)  2.30381e+08 2.18978e+08  4.95  
  17  5 (airplane, boat, fruits, goldhill, park)   1.85457e+08  1.78302e+08  3.86  
 
 
 

 
 

Figure 3. A Typical Portrait-like Photographic Image (“barb.bmp”) from Test 16 
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Figure 4.  A Typical Landscape-like  Photographic Image (“goldhill.bmp”) from 
Test 17 

 
 

These tests evolved the following sets of coefficients for optimized inverse transforms: 
 

Test 16: h2 = {0.4686, 0.8035, 0.2378, -0.1021} 
g2 = {-0.2084, -0.1461, 0.7251, -0.3935} 

Test 17: h2 = {0.4637, 0.8116, 0.2449, -0.1095} 
g2 = {-0.1680, -0.1644, 0.7555, -0.3732} 

 
Considerable computational resources were necessary to complete each 2-D run. For 
example, Test 17 required 46 hours, 53 minutes, 59 seconds of wall clock time on a high-
end dedicated PC. Access to supercomputers would allow future tests to use much larger 
populations (e.g., M = 10,000) over many more generations (e.g., G = 5,000), possibly 
evolving inverse transforms that exhibit substantially better reconstruction properties than 
those described above.  
 
 
4 CONCLUSIONS 
 
Collectively, the results of this study suggested that the number of coefficient sets 
capable of producing high-fidelity signal reconstructions under lossy conditions may be 
much larger than previously believed. The novel coefficient sets evolved during this 
study violated wavelet properties required for perfect reconstruction, such as invertibility 



 10

and nonredundancy [15]. Nevertheless, the corresponding inverse transforms consistently 
outperformed the Daub4 inverse transform, often producing significantly higher fidelity 
reconstructions of periodic signals and images, as measured by the percentage reduction 
in the MSE of each reconstructed signal. The results of this study strongly encouraged the 
identification and use of evolved inverse transforms for signal reconstruction under lossy 
conditions. In particular, our results conclusively demonstrated our GA’s ability to 
automatically identify novel sets of coefficients for inverse transforms that successfully 
reconstruct various classes of periodic signals and images under lossy conditions subject 
to quantization. 
 
Our research will continue with significantly larger tests for multidimensional signals and 
will include a rigorous mathematic analysis of our findings.  
 
 
REFERENCES 
 
[1] Walker, J. S., 1999. A Primer on Wavelets and Their Scientific Applications, CRC 

Press. 
 
[2] Daubechies, I., 1988. Orthonormal Bases of Compactly Supported Wavelets, 

Communications on Pure and Applied Mathematics, 41: 909-996. 
 
[3] Cohen, A., I. Daubechies, and J. C. Feauveau, 1992. Biorthogonal Bases of 

Compactly Supported Wavelets, Communications on Pure and Applied Mathematics, 
45: 485-560. 

 
[4] Mallat, S., 1998. A Wavelet Tour of Signal Processing, Academic Press. 
 
[5] Saha, S. and R. Vemuri, 1999. Adaptive Wavelet Filters in Image Coders – How 

Important Are They?, IECON'99 Proceedings: The 25th Annual Conference of the 
IEEE Industrial Electronics Society, 2: 559-564, IEEE Industrial Electronics Society.  

 
[6] Claypoole, R. L., R. G. Baraniuk, and R. D. Nowak, 1999. Adaptive Wavelet 

Transforms via Lifting, Technical Report 9304, Rice University. 
 
[7] Le Pennec, E. and S. Mallat, 2000. Image Compression with Geometrical Wavelets, 

IEEE Conference on Image Processing, IEEE Signal Processing Society. 
  
[8] Saha, S. and R. Vemuri, 2000. Analysis-based Adaptive Wavelet Filter Selection in 

Lossy Image Coding Schemes, Proceedings: IEEE International Symposium on 
Circuits and Systems (ISCAS 2000), Geneva, Switzerland. 

  
[9] Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine 

Learning, Addison-Wesley. 
  
 [10] Daubechies, I., 1992. Ten Lectures on Wavelets, SIAM. 



 11

[11] Odegard, J., R. Gopinath, and C. Burrus 1994. Design of Linear Phase Cosine 
Modulated Filter Banks for Subband Image Compression, CML Technical Report, 
Rice University. 

 
[12] Lai, Y.-K. and C.-C. J. Kuo, 1997. Image quality measurement using the Haar 

wavelet, Wavelet Applications in Signal and Image Processing V, SPIE. 
 
[13] Nag, S. K. and L. Peters, Jr. 1998. Ramp Response Signatures for Dielectric 

Targets, SPIE Proceedings, 3392: 703-713, SPIE. 
 
[14] Venkatachalam, V. and J. Aravena, 1998. Detecting Periodic Behavior in 

Nonstationary Signals, IEEE-SP International Symposium on Time-frequency and 
Time-scale Analysis, IEEE. 

 
[15] Piella, G. and H. J. A. M. Heijmans, 2001. Adaptive Lifting Schemes with Perfect 

Reconstruction, Report PNA-R0104, Centrum voor Wiskunde en Informatica, 
Stichting Mathematisch Centrum. 

 




